|
|
马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有帐号?立即注册
x
涡轮喷气式发动机 姓名:王芳 学号:20205606100133 涡轮喷气发动机是一种涡轮发动机。特点是完全依赖燃气流产生推力。通常用作高速飞机的动力,但油耗比涡轮风扇发动机高。涡喷发动机分为离心式与轴流式两种,离心式由英国人弗兰克·惠特尔爵士于1930年发明,但是直到1941年装有这种发动机的飞机才第一次上天,也没有参加第二次世界大战;轴流式诞生在德国,并且作为第一种实用的喷气式战斗机Me-262的动力于1944年夏投入战场。相比起离心式涡喷发动机,轴流式具有横截面小,压缩比高的优点,当今的涡喷发动机大多为轴流式。
现代涡轮喷气发动机的结构由进气道、压气机、燃烧室、涡轮和尾喷管组成,战斗机的涡轮和尾喷管间还有加力燃烧室。涡轮喷气发动机仍属于热机的一种,就必须遵循热机的做功原则:在高压下输入能量,低压下释放能量。因此,从产生输出能量的原理上讲,喷气式发动机和活塞式发动机是相同的,都需要有进气、加压、燃烧和排气这四个阶段,不同的是,在活塞式发动机中这4个阶段是分时依次进行的,但在喷气发动机中则是连续进行的,气体依次流经喷气发动机的各个部分,就对应着活塞式发动机的四个工作位置。
空气首先进入的是发动机的进气道,当飞机飞行时,可以看作气流以飞行速度流向发动机,由于飞机飞行的速度是变化的,而压气机适应的来流速度是有一定的范围的,因而进气道的功能就是通过可调管道,将来流调整为合适的速度。在超音速飞行时,在进气道前和进气道内气流速度减至亚音速,此时气流的滞止可使压力升高十几倍甚至几十倍,大大超过压气机中的压力提高倍数,因而产生了单靠速度冲压,不需压气机的冲压喷气发动机。
进气道后的压气机是专门用来提高气流的压力的,空气流过压气机时,压气机工作叶片对气流做功,使气流的压力,温度升高。在亚音速时,压气机是气流增压的主要部件。
从燃烧室流出的高温高压燃气,流过同压气机装在同一条轴上的涡轮。燃气的部分内能在涡轮中膨胀转化为机械能,带动压气机旋转,在涡轮喷气发动机中,平衡状态下气流在涡轮中膨胀所做的功等于压气机压缩空气所消耗的功以及传动附件克服摩擦所需的功。经过燃烧后,涡轮前的燃气能量大大增加,因而在涡轮中的膨胀比远大于压气机中的压缩比,涡轮出口处的压力和温度都比压气机进口高很多,发动机的推力就是这一部分燃气的能量而来的。
从涡轮中流出的高温高压燃气,在尾喷管中继续膨胀,以高速沿发动机轴向从喷口向后排出。这一速度比气流进入发动机的速度大得多,使发动机获得了反作用的推力。
一般来讲,当气流从燃烧室出来时的温度越高,输入的能量就越大,发动机的推力也就越大。但是,由于涡轮材料等的限制,只能达到1650K左右,现代战斗机有时需要短时间增加推力,就在涡轮后再加上一个加力燃烧室喷入燃油,让未充分燃烧的燃气与喷入的燃油混合再次燃烧,由于加力燃烧室内无旋转部件,温度可达2000K,可使发动机的推力增加至1.5倍左右。其缺点就是油耗急剧加大,同时过高的温度也影响发动机的寿命,因此发动机开加力一般是有时限的,低空不过十几秒,多用于起飞或战斗时,在高空则可开较长的时间。
轴流式涡喷发动机的主要结构如图,空气首先进入进气道,因为飞机飞行的状态是变化的,进气道需要保证空气最后能顺利的进入下一结构:压气机(compressor,或压缩机)。进气道的主要作用就是将空气在进入压气机之前调整到发动机能正常运转的状态。在超音速飞行时,机头与进气道口都会产生激波(shockwave,又称震波),空气经过激波压力会升高,因此进气道能起到一定的预压缩作用,但是激波位置不适当将造成局部压力的不均匀,甚至有可能损坏压气机。所以一般超音速飞机的进气道口都有一个激波调节锥,根据空速的情况调节激波的位。
2. 涡轮喷气发动机
两侧进气或机腹进气的飞机由于进气道紧贴机身,会受到机身附面层(boundary layer,或边界层)的影响,还会附带一个附面层调节装置。所谓附面层是指紧贴机身表面流动的一层空气,其流速远低于周围空气,但其静压比周围高,形成压力梯度。因为其能量低,不适于进入发动机而需要排除。当飞机有一定迎角(angle of attack,AOA,或称攻角)时由于压力梯度的变化,在压力梯度加大的部分(如背风面)将发生附面层分离的现象,即本来紧贴机身的附面层在某一点突然脱离,形成湍流。湍流是相对层流来说的,简单说就是运动不规则的流体,严格的说所有的流动都是湍流。湍流的发生机理、过程的模型化都不太清楚。但是不是说湍流不好,在发动机中很多地方例如在燃烧过程就要充分利用湍流。
3. 压气机
压气机由定子(stator)页片与转子(rotor)页片交错组成,一对定子页片与转子页片称为一级,定子固定在发动机框架上,转子由转子轴与涡轮相连。现役涡喷发动机一般为8-12级压气机。级数越多越往后压力越大,当战斗机高G机动时,流入压气机前级的空气压力骤降,而后级压力很高,此时会出现后级高压空气反向膨胀,发动机工作极不稳定的状况,工程上称为“喘振”,这是发动机最致命的事故,很有可能造成停车甚至结构毁坏。经验表明喘振多发生在压气机的5,6级间,在次区间设置放气环,以使压力出现异常时及时泄压可避免喘振的发生。或者将转子轴做成两层同心空筒,分别连接前级低压压气机与涡轮,后级高压压气机与另一组涡轮,两套转子组互相独立,在压力异常时自动调节转速,也可避免喘振。
4. 燃烧室与涡轮
空气经过压气机压缩后进入燃烧室与煤油混合燃烧,膨胀做功;紧接着流过涡轮,推动涡轮高速转动。因为涡轮与压气机转子连在一根轴上,所以压气机与涡轮的转速是一样的。最后高温高速燃气经过喷管喷出,以反作用力提供动力。燃烧室最初形式是几个围绕转子轴环状并列的圆筒小燃烧室,每个筒都不是密封的,而是在适当的地方开有孔,所以整个燃烧室是连通的,后来发展到环形燃烧室,结构紧凑,但是整个流体环境不如筒状燃烧室,还有结合二者优点的组合型燃烧室。
涡轮始终工作在极端条件下,对其材料、制造工艺有着极其苛刻的要求。多采用粉末冶金的空心页片,整体铸造,即所有页片与页盘一次铸造成型。相比起早期每个页片与页盘都分体铸造,再用榫接起来,省去了大量接头的质量。制造材料多为耐高温合金材料,中空页片可以通以冷空气以降温。而为第四代战机研制的新型发动机将配备高温性能更加出众的陶瓷粉末冶金的页片。这些手段都是为了提高涡喷发动机最重要的参数之一:涡轮前温度。高涡前温度意味着高效率,高功率。
5. 喷管
喷管(nozzle,或称喷嘴)的形状结构决定了最终排除的气流的状态,早期的低速发动机采用单纯收敛型喷管,以达到增速的目的。根据牛顿第三定律,燃气喷出速度越大,飞机将获得越大的反作用力。但是这种方式增速是有限的,因为最终气流速度会达到音速,这时出现激波阻止气体速度的增加。而采用收敛-扩张喷管(也称为拉瓦尔喷管)能获得超音速的喷气流。飞机的机动性来主要源于翼面提供的空气动力,而当机动性要求很高时可直接利用喷气流的推力。在喷管口加装燃气舵面或直接采用可偏转喷管(也称为推力矢量喷管,或向量推力喷嘴)是历史上两种方案,其中后者已经进入实际应用阶段。著名的俄罗斯Su-30、Su-37战机的高超机动性就得益于留里卡设计局的AL-31推力矢量发动机。燃气舵面的代表是美国的X-31技术验证机。
6. 加力燃烧室
在经过涡轮后的高温燃气中仍然含有部分未来得及消耗的氧气,在这样的燃气中继续注入煤油仍然能够燃烧,产生额外的推力。所以某些高性能战机的发动机在涡轮后增加了一个加力燃烧室(afterburner,或后燃器),以达到在短时间里大幅度提高发动机推力的目的。一般而言加力燃烧能在短时间里将最大推力提高50%,但是油耗惊人,一般仅用于起飞或应付激烈的空中缠斗,不可能用于长时间的超音速巡航。
|
| |