杨乙耕 发表于 2022-7-6 12:49:03

空气动力学知识

本帖最后由 杨乙耕 于 2022-7-6 13:02 编辑

空气动力学知识

姓名:杨乙耕               学号:20205606100238

      对空气动力学的研究,可以追溯到人类早期对鸟或弹丸在飞行时的受力和力的作用方式的种种猜测。17世纪后期,荷兰物理学家惠更斯(Huygens)首先估算出物体在空气中运动的阻力;1726年,牛顿(Newton)应用力学原理和演绎方法得出:在空气中运动的物体所受的力,正比于物体运动速度的平方和物体的特征面积以及空气的密度。这一工作可以看作是空气动力学经典理论的开始。1755年,数学家欧拉(Euler)得出了描述无粘性流体运动的微分方程,即欧拉运动微分方程。这些微分形式的动力学方程在特定条件下可以积分,得出很有实用价值的结果,如伯努利方程。法国力学家J.le.T.达朗贝尔在不考虑黏性影响的情况下,得到运动不受阻力的佯谬(达朗贝尔佯谬),这一结果引起了很多学者的关注,19世纪上半叶,法国的纳维(Navier)和英国的斯托克斯(Stokes)提出了描述粘性不可压缩流体动量守恒的运动方程,
到19世纪末,经典流体力学的基础已经形成。20世纪以来,随着航空事业的迅速发展,空气动力学便从流体力学中发展出来并形成力学的一个新的分支,这一过程中冯卡门对空气动力学的发展起了重要作用。
航空要解决的首要问题是如何获得飞行器所需要的升力、减小飞行器的阻力和提高它的飞行速度。这就要从理论和实践上研究飞行器与空气相对运动时作用力的产生及其规律。1894年,英国的兰彻斯特首先提出无线翼展机翼或翼型产生升力的环量理论,和有限翼展机翼产生升力的螺旋理论等。但兰彻斯特的想法在当时并未得到广泛重视。
约在1901~1910年间,库塔和茹科夫斯基(分别独立地提出了翼型的环量和升力理论,并给出升力理论的数学形式,建立了二维机翼理论。1904年,德国的普朗特发表了著名的低速流动的边界层理论(又名附面层理论)。该理论指出在不同的流动区域中控制方程可有不同的简化形式。
边界层理论极大地推进了空气动力学的发展。普朗特还把有限翼展的三维机翼理论系统化,给出它的数学结果,从而创立了有限翼展机翼的升力线理论。但它不能适用于失速、后掠和小展弦比的情况。1946年美国的琼斯提出了小展弦比机翼理论,利用这一理论和边界层理论,可以足够精确地求出机翼上的压力分布和表面摩擦阻力。
近代航空和喷气技术的迅速发展使飞行速度迅猛提高。在高速运动的情况下,必须把流体力学和热力学这两门学科结合起来,才能正确认识和解决高速空气动力学中的问题。1887~1896年间,奥地利科学家马赫在研究弹丸运动扰动的传播时指出:在小于或大于声速的不同流动中,弹丸引起的扰动传播特征是根本不同的。在高速流动中,流动速度与当地声速之比是一个重要的无量纲参数。1929年,德国空气动力学家阿克莱特首先把这个无量纲参数与马赫的名字联系起来,十年后,马赫数这个特征参数在空气动力学中广泛引用。
小扰动在超声速流中传播会叠加起来形成有限量的突跃——激波。在许多实际超声速流动中也存在着激波。在绝热情况下,气流通过激波流场,参量发生突跃,熵增加而总能量保持不变。
英国科学家兰金在1870年、法国科学家希贡纽在1887年分别独立地建立了气流通过激波所应满足的关系式,为超声速流场的数学处理提供了正确的边界条件。对于薄翼小扰动问题,阿克莱特在1925年提出了二维线化机翼理论,以后又相应地出现了三维机翼的线化理论。这些超声速流的线化理论圆满地解决了流动中小扰动的影响问题。
在飞行速度或流动速度接近声速时,飞行器的气动性能发生急剧变化,阻力突增,升力骤降。飞行器的操纵性和稳定性极度恶化,这就是航空史上著名的声障。大推力发动机的出现冲过了声障,但并没有很好地解决复杂的跨声速流动问题。直至20世纪60年代以后,由于跨声速巡航飞行、机动飞行,以及发展高效率喷气发动机的要求,跨声速流动的研究更加受到重视,并有很大的发展。

页: [1]
查看完整版本: 空气动力学知识